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Mission Aperture 
(m)

Wavelength WFS&C WFE Total WFE Dynamic 
range

Spatial 
resolution

Bandwidth Tech Freeze 
date

HST 2.4 UV-IR
FUSE 0.37 UV
SIRTF 0.85 IR
GALEX 0.5 UV
Kepler 0.95 VIS
JWST 6 to 7 IR 10 nm 150 nm 1.00E+06 5 cyc/ap 1.00E-06 2004

Coronagraph precursor 1 to 3 VIS 50 pm 100 pm in 
band

1.00E+05 30+cyc/ap 1.00E-05 2005?

SIM 0.5 VIS

TPF Coronagraph 8 to 10 VIS 40 pm 50 pm in 
band

1.00E+06 30+cyc/ap 1e-3 to 1e-6 2008?

TPF IFO 3 to 4 IR 1 nm 10 nm 5-10 cyc/ap 2008?
SAFIR 8 to 10 FIR/SubMM 100 nm? 1 um? 1.00E+05 2011?
Large UV/Opt big UV-VIS 1 nm 10 nm 1.00E+06 high low 2016?
Life Finder 15+ undefined undefined undefined undefined undefined undefined 2016?

Large Space Telescopes Need WFS&C

• Future NASA missions promise to open 
new frontiers in astronomy using large 
aperture space telescopes

• Getting large apertures into space 
requires segmenting or folding the 
primary optic to fit in a booster shroud 

• Wavefront control after deployment is 
required to achieve high optical quality

• JWST mission is pioneering space 
telescope WFS&C

SAFIR 



JWST WF Sensing and Control

• Primary mirror will be deployed, with from 18 to 36 segments
• Telescope will be cooled to cryo temperatures
• Initial misalignments and figure errors may be large!!!
• WFS&C’s job is to align telescope and correct figure errors to 

achieve diffraction-limited imaging at 2 um wavelength
• We do this with actuators that move and deform the segments
• WF sensing data is provided by science camera images and 

spectra, which are processed on the ground to determine 
actuator commands

• JWST will be very stable, by virtue of its environment and 
design

• Actuators will be off during observations
• Periodic WFS&C updates will keep performance in spec



WFS&C Modes

• The baseline JWST WFC has 3 main initialization modes: Coarse 
Alignment; Coarse Phasing and Fine Phasing

• Each mode reduces the error it starts with by many times, and then 
hands over to the succeeding mode

• PSF Monitoring monitors science observations to track the evolving 
WF error over long periods of time

• Fine Phasing is repeated at intervals (1/month?) throughout the 
mission 

Control Mode
Capture Range 
(peak-valley 
WFE)

Accuracy (rms 
WFE or WFSE)

Capture Range 
(peak-valley 
WFE)

Accuracy (rms 
WFE or WFSE)

Coarse 
Alignment 5 mm 10 um 5 mm 10 um

Coarse Phasing 50 um 1 um 50 um 100 nm

Fine Phasing 5 um <100 nm 3 um 20 nm

Actuator 
Calibration <10 nm 2 nm 2 nm

Camera-specific 
WFE Calibration <10 nm <10 nm 3.5 nm

PSF Monitoring <10 nm sensing 6 nm sensing

NGST Performance Expected Demonstrated in the Lab



Control 
Mode

Algorithm Capture 
Range 
(peak-valley 
WFE)

Accuracy 
(rms WFE 
or WFSE)

Capture 
Range 
(peak-valley 
WFE)

Accuracy 
(rms WFE 
or WFSE)

Segment ID 5 mm 5 mm
Coarse 
Align
Focus 10 um 10 um

Government Baseline 
WFS&C System

NGST Performance Demonstrated in the Lab

Coarse 
Alignment

• At first light, the telescope is pointed at a bright, isolated star
• The initial image is broken into many blobs: defocussed, separated 

segment images
• Segment ID takes an image, moves segments incrementally, takes 

another image, then “differentiates” the 2 images to identify which 
blob corresponds to which segment

• Missing spots trigger a larger segment scan, stepping segment tilts in 
units of the camera field of view, until that segment is found

• Once identified, segment spots are placed in particular positions on 
the detector for Focus

Coarse Alignment - Capture and Tilt

Segment ID 5 mm 5 mm
Coarse 
Align



Coarse Align Image Differentiation Examples
• Small tilts ∆xi and ∆yi are introduced between exposures (here 

i is the ith segment)
• The difference frame is ∆Ii = pos|Ii(xi, yi) - Ii(xi+∆xi, yi+∆yi)|

Example from WCT-2 testbed.
Difference shows the location 
of the segment blob.

Example using JWST simulation with large number of segments. 6 segments are 
identified simultaneously, and moved to overlie at the reference location.



Coarse Alignment - Focus

• Each segment is focused by driving it in 
piston to minimize a 3-stage encircled-
energy metric

• When defocus is large, steps are 
computed using geometric optics, and 
convergence is rapid

• When near the segment depth of focus, a 
hill-climbing method is used

• When completed, segments are focused 
but not coherently phased
– Piston errors in the 10s of microns

Control 
Mode

Algorithm Capture 
Range 
(peak-valley 
WFE)

Accuracy 
(rms WFE 
or WFSE)

Capture 
Range 
(peak-valley 
WFE)

Accuracy 
(rms WFE 
or WFSE)

Segment ID 5 mm 5 mm
Coarse 
Align
Focus 10 um 10 um

Government Baseline 
WFS&C System

NGST Performance Demonstrated in the Lab

Coarse 
Alignment

Focus 10 um 10 um



• Wavelength variation 
modulates fixed path 
difference between 
2 segments

• Bright where λ is 
coherent with δL

• Null where it 
combines destructively

• Period of fringe gives absolute piston displacement
• Slope of dark bands gives the sign

Coarse Phasing - DFS
Control 
Mode

Algorithm Capture 
Range 
(peak-valley 
WFE)

Accuracy 
(rms WFE 
or WFSE)

Capture 
Range 
(peak-valley 
WFE)

Accuracy 
(rms WFE 
or WFSE)

Dispersed-
Fringe 
Sensing

50 um 1 um piston 
error 50 um 100 nm 

piston error

White-Light 
Interferomet
ry

10 um 10 nm piston 
error 5 um 20 nm piston 

error

Coarse 
Phasing

Government Baseline 
WFS&C System

NGST Performance Demonstrated in the Lab

Dispersed-
Fringe 
Sensing

50 um 1 um piston 
error 50 um 100 nm 

piston error

λ
Increases

Dark Bands

x
L 

δL

Spectrum



Coarse Phasing - DFS Example from WCT-2

4. Implement correction

1. Take picture 
2. Analyze picture 

to extract fringe
3. Result

• Post-correction fringe shows 
very little modulation

• Detected piston reduced to near 
zero



DFS at Keck  
• Dispersed Fringe Sensing demonstrated using Keck 2

– JWST shares Keck Aperture: 36 hexagonal segments
– DFS piston measurements obtained using a combined DFS + 

Shack-Hartmann mask covering a subset of edges.
– DFS results should match piston commands
– DFS results should also match Keck “Phasing Camera System” 

(PCS) measurements
♦ PCS is, a modified Shack-Hartmann sensor that uses WLI to 

find edge offsets

• DFS Performance summary (preliminary):
– Capture range: >30 mm
– Accuracy: <300 nm



Fine Phasing - WF Sensing

• Image-based WF sensing has important advantages...

Control 
Mode

Algorithm Capture 
Range 
(peak-valley 
WFE)

Accuracy 
(rms WFE 
or WFSE)

Capture 
Range 
(peak-valley 
WFE)

Accuracy 
(rms WFE 
or WFSE)

WFS/MGS >15 um <10 nm >3 um 3.5 nm
WFC >15 um <100 nm >3 um 20 nm

Government Baseline 
WFS&C System

NGST Performance Demonstrated in the Lab

Fine 
Phasing

WFS/MGS >15 um <10 nm >3 um 3.5 nm
WFC >15 um <100 nm >3 um 20 nm

Method Instrument Common Accuracy Range Spatial Noise & Resolves
mode reject resolution jitter piston?

Image- Any camera, Yes Excellent Med High Robust Yes
based any field (50 um)    (multi-color)

Hartman Dedicated No Good High Med Robust No
sensor or flip-in (1 mm)

Shearing Dedicated No Good Med High Robust Maybe
interf.

Phase- Dedicated No Excellent Med High Sensitive Yes
shifting    (multi-color)
interf.



WF Sensing Using Defocussed Images

• Bumps on a mirror surface shift the focus of patches of the beam
• These show up as bright spots on one side of focus and dark spots on 

the other
• The pupil and defocussed images are related by Fourier transforms
• Iterative processing of multiple defocussed images correlates the 

intensity variations in each, derives common WF phase map

Mirror

Bump

Intra-focal
image

Extra-focal 
image

Wavefronts

Science camera used 
as WF sensor



Fine-Phasing JWST in Simulation
Images used for WF sensing

– 5 waves defocus

+ 5 waves defocus

– 2 waves defocus

+ 2 waves defocus

In-Focus image

WF estimate

WFE=480 nm RMS

In-Focus image

WF estimate

WFE= 35 nm RMS

• Fine Phasing uses MGS Phase Retrieval to 
estimate WF

• WF control is applied using segment RB 
and RoC actuators

• Post-control WF 
meets 150 nm 
objective



In-Focus image

WF estimate

Images used for WF sensing

DM2
Filled-

aperture
3-segment

mirror
Camera

• Experiment here is to 
correct segment aberrations
– Initial WFE 1620 nm peak-

to-valley, 270 nm RMS...

• After DM and segment control
...reduced to 54 nm RMS

Example from WCT-3

– 15.1 waves – 7.6 waves
In-Focus imageImages used for WF sensing

+ 15.1 waves+ 7.6 waves WF estimate

WFE=1620 nm P-V
(270 nm RMS)

WFE=702 nm P-V
(54 nm RMS)

– 15.1 waves – 7.6 waves

+ 15.1 waves+ 7.6 waves



Fine Phasing - WF Control

• WF control is effected using actuators to move segments in 
6DOF and to change segment RoC

• 2-stage linear actuators grouped into 3 bipods move segments 
in tip, tilt, twist, decenter (X and Y) and piston
– Coarse stage provides long 

stroke, looser accuracy
– Fine stage provides short

stroke, finer precision

Control 
Mode

Algorithm Capture 
Range 
(peak-valley 
WFE)

Accuracy 
(rms WFE 
or WFSE)

Capture 
Range 
(peak-valley 
WFE)

Accuracy 
(rms WFE 
or WFSE)

WFS/MGS >15 um <10 nm >3 um 3.5 nm
WFC >15 um <100 nm >3 um 20 nm

Government Baseline 
WFS&C System

NGST Performance Demonstrated in the Lab

Fine 
Phasing

WFS/MGS >15 um <10 nm >3 um 3.5 nm
WFC >15 um <100 nm >3 um 20 nm



WF Control with Hexapods Example

• Fine Phasing (WFS and WFC) initiated with large errors in all 
rigid-body and RoC DOFs 

• Stroke-dependent actuation error
– Large actuator stroke leaves large actuation error
– Subsequent smaller actuator commands leave less actuation error
– 3-4 iterations are necessary to reduce actuator error to smallest 

level, corresponding to minimum error (3 nm) 



Example (cont.)

• “Weak” DOFs (decenter and twist) are controlled  
– Weak influence of these DOFs means large motions are necessary 

to compensate small aberrations
– Large actuator movements leave large actuation errors in 4 

strong DOFs
• A 2nd round of 4DOF control cleans up actuation errors and 

control nonlinearities



High Contrast Imaging Testbed
• The TPF HCIT is intended to demonstrate 

extremely high contrast coronagraphy for planet 
hunting

• Requires suppressing scattered light in low and mid 
spatial frequencies using (in this example) a 322

actuator DM
• This chart shows a sequence of WFS&C iterations 

leading to a WF corrected to λ/5000 for spatial 
frequencies within the DM bandpass

Sequence of 
Wavefront 
Estimates

Sequence of 
WFE Power 

Spectral 
Densities

Focus-Diverse 
Measurements
It. 1 It 8



PSF Monitoring 
Control 
Mode

Algorithm Capture 
Range 
(peak-valley 
WFE)

Accuracy 
(rms WFE 
or WFSE)

Capture 
Range 
(peak-valley 
WFE)

Accuracy 
(rms WFE 
or WFSE)

PSF 
Monitoring

IPO/Prescri
ption 
Retrieval

<10 nm 6 nm

WFS/MGS >15 um <10 nm 3 um 3.5 nm
WFC >15 um <100 nm 3 um 20 nm

Government Baseline 
WFS&C System

NGST Performance Demonstrated in the Lab

Fine 
Phasing

• In-focus PSF Optimizer (IPO) measures low spatial-ƒ 
components of WFE from narrow-band in-focus images 
– IPO uses Prescription Retrieval model-matching algorithm

• IPO provides robust, accurate control for WCT-2
• IPO images can be taken from the science data stream: a 

near-zero overhead means of monitoring the evolving WFE
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• WCT-2 data
– 900 nm filter
– 0.1 sec exposure time

Data Image
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– No PSF magnifier
– Match = 0.026 RSS vs. total of 25 

Model is
green

Data is
blue

PSF Monitoring Example from WCT-2



Mars Observer Camera Example
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Image M1535: Actual and Simulated Images

G Image-specific parameter results
È Focus: 3 Watt rim heater yields -0.2908 um
È Field: 1.806 mrad

È Intensity: 2.8958 (unitless)
È Background: 20.498 (DN)

Actual image Simulated image
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Image M1699: Actual and Simulated Images

G Image-specific parameter results
È Focus: 1 Watt hub heater yields 0.1814 um
È Field: 0.4485 mrad

È Intensity: 2.961 (unitless)
È Background: 20.828 (DN)

Actual image Simulated image
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• Diagnostic data taken en route 
to Mars

• Illustrates prescription 
retrieval with low resolution, low 
SNR, broadband data



WF Sensing and Control Is Built On...

• Good computational models
– Embedded in WFS and WFC algorithms
– Simulations for development before the hardware is ready

• Good analysis
• Good devices
• Good experiments
• OK optics!



Conclusion

• The JWST Government WFS&C Team has 
developed a complete WFS&C system that is 
capable of meeting mission requirements

• This system has been tested to TRL 4
• We are now working closely with TRW/Ball (the new 

JWST Prime Contractor), who have the ultimate 
responsibility for JWST

• JWST WFS&C will be at TRL 6 by the NGST Non-
Advocate Review (2004?)


